Robust Backstepping Control Based on a Lyapunov Redesign for Skid-Steered Wheeled Mobile Robots
نویسندگان
چکیده
This paper represents a robust backstepping tracking control based on a Lyapunov redesign for Skid‐Steered Wheeled Mobile Robots (WMRs). We present kinematic and dynamic models that explicitly relate the perturbations to the skidding in order to improve the tracking performance during real running. A robust controller is synthesized in the backstepping approach and the Lyapunov redesign technique, which forces the error dynamics to stabilize to the reference trajectories. We design an additional feedback control ‐ a Lyapunov redesign ‐ such that the overall control stabilizes the actual system in the presence of uncertainty and perturbation with the knowledge of the Lyapunov function. Simulation results are provided to validate and analyse the performance and stability of the proposed controller.
منابع مشابه
Trajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملDynamical formation control of wheeled mobile robots based on fuzzy logic
In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...
متن کاملGlobal exponential setpoint control of wheeled mobile robots: a Lyapunov approach
This paper presents a new di!erentiable, time-varying controller for the regulation problem for wheeled mobile robots. After the WMR kinematics have been transformed into an advantageous form, a dynamic oscillator, in lieu of explicit cosine or sine terms, is constructed to promulgate a global exponential regulation property for the transformed kinematic model via a Lyapunov-type argument. In o...
متن کاملFuzzy Motion Control for Wheeled Mobile Robots in Real-Time
Due to various advantages of Wheeled Mobile Robots (WMRs), many researchers have focused to solve their challenges. The automatic motion control of such robots is an attractive problem and is one of the issues which should carefully be examined. In the current paper, the trajectory tracking problem of WMRs which are actuated by two independent electrical motors is deliberated. To this end, and ...
متن کاملNon-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator
This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...
متن کامل